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This paper considers the system of equations describing the convective instability of air in the snow cover. We
analyze the conditions under which the principle of "monotony" of normal perturbations is fulfilled and esti-
mate the critical parameters of the main level of air equilibrium instability with allowance for the heat and
mass exchange between the snow surface and the environment.

Equations of Thermal Convection of Air in the Snow Cover. Snow is a porous medium consisting of a
rigid framework formed by randomly arranged ice crystals and pores filled with air that can pass through them both
inwards and outwards. The temperature field in snow is inhomogeneous as a rule. When the vertical temperature gra-
dient exceeds a certain threshold value, inside the snow macroscopic motion of air filling the pores in it appears. It is
described by a system of hydrodynamical equations including the equations of motion, heat transfer, and continuity [1].

The equation of motion can be written in the form

ρf 
dV
dt

 = − f∇ p + fρg + F , (1)

where F is the friction force that arises when the air moves relative to the crystalline framework. Its value, assigned
to the unit volume of the porous medium, according to the Darcy law, is

F = 
fµ
σ

 V . (2)

Equation (1), taking into account (2), can be written as

∂V
∂t

 + (V∇)  V = − 
1
ρ

 ∇ p + g − 
ν
σ

 V . (3)

The heat flux density j in the snow is determined by the formula

j = − λs∇θ  − LsDw∇ρ w + fρcpθV + Ls fρwV . (4)

In so doing, the equation of heat transfer in the snow takes on the form

∂
∂t

 (ρscsθ) + div j = 0 . (5)

The temperature dependence of the saturating vapor density, with the aid of the Clapeyron–Clausius equation,
can be written in the form

ρw = ρw0 



1 + 

Lsθ

RwT0
2




 . (6)

Taking into account equalities (4) and (6), we represent Eq. (5) as
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∂θ
∂t

 + MV ∇θ  + Mθ div V + 
ρw0Ls

ρscs
 div V = χs ∆θ , (7)

where

χs = 
λs

ρscs

 






1 + 

Ls
2ρw0λs

RwDsT0
2








(8)

is the effective thermal diffusivity of the snow, and

M = 
fρcp

ρscs

 






1 + 

Ls
2
 ρw0

ρRwcpT0
2







 . (9)

The second terms between brackets in equalities (8) and (9) are equal to 0.1–0.2 and 0.6–0.7, respectively.
For the air piercing the snow framework, the continuity equation

∂ρ
∂t

 + div (ρV) = 0 . (10)

is met.
The system of equations (3), (7), and (10) describing the air motion in the snow should be complemented by

the equation of state

ρ = 
fp
RT

 . (11)

We begin the derivation of the equation of free convection of air in the snow by simplifying formula (11).
We represent the temperature T and the pressure p in the form T = sTt + T′, p = spt + p′, where sTt and

spt are certain constant mean values taken as references and the components T′ and p′ are assumed to be small. Then,
restricting ourselves to the terms linear in T′ and p′, we can write

ρ = ρ0 + 




∂ρ
∂T


  p

 T
′
 + 




∂ρ
∂p


  T

 p′ = ρ0 (1 − fβT
′
 + αp′f) ,

where α = 
1
ρ0

 




∂ρ
∂p


T

 = 
1
p

 and β = − 
1
ρ0

 




∂ρ
∂p


 p

 = 
1
T

 are the coefficients of isothermal compression and thermal expansions

of the air.
Besides assuming small T′ and p′, we also assume that fαp′ =  fβT′ . We show that this condition is always

met in snow.
If l is the characteristic vertical size, then the hydrostatic differential pressure is of the order of ρ0gl, where

g =  g , and the condition αp′ << β T′  takes on the form





lρgα
ρT




 = 


gl
RT




 << 1 . (12)

Replacing in the obtained inequality g/R by g ⁄ cρ, we have γa << γs, where γa = 10−2 deg/m. Under real conditions,
γa << γs.

Taking into account inequality (12), for the air density in the snow we obtain

ρ = ρ0 (1 − f βT
′) ,
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and the condition of smallness of the relative changes in the air density allows us to write the continuity equation as

div V = 0 . (13)

Thus, the system of equations of thermal convection in the snow in the Boussinesq approximation can be
given in the form

∂V
∂t

 + (V∇ ) V = − 
1
ρ0

 ∇ p − 
ν
σ

 V + f βgθez ,   
∂θ
∂t

 + M V ∇θ  = χs ∆θ ,   div V = 0 . (14)

For short, the prime in p′ was omitted and T′ was replaced by θ.
The obtained system of equations (14) differs from the analogous system of equations of thermal convection

of an incompressible fluid in that the motion equation, instead of the term ν∆V, has the term −
ν
δ

V, and in the heat-
conductivity equation the term V∇θ  has acquired a factor M of the order of 1.6–1.7.

If the snow mass is contained in a cavity surrounded by a solid homogeneous heat-conducting mass, it is nec-
essary to add to the system of equations (14) the heat-conductivity equation determining the temperature field in the
mass:

 
∂θm

∂t
 = χm∆θm . (15)

It is necessary to add the boundary conditions to the system of equations (14)–(15): at the snow–solid-mass
interface the velocity goes to zero, V = 0, and the temperature and the normal component of the thermal flow are con-

tinuous: θ = θm, λs 
∂θ
∂n

 = λm
∂θm

∂n
.

We now consider the small nonstationary perturbations of equilibrium. Then in the equations that are obtained
by substituting (V1, θ0 + θ1, p0 + p1, θm0 + θ1) into (14)–(15) the terms quadratic in perturbed members can be ne-
glected, and, as a result, we obtain

∂V1

∂t
 = − 

1

ρ0
 ∇ p1 − 

ν
σ

 V1 + f βgθ1ez ,   
∂θ1

∂t
 + M V1 ∇ θ0 = χs ∆θ1 ,   div V1 = 0 ,  

∂θm1

∂t
 = χm∆θ1 . (16)

Let us write the system of equations (16) in dimensionless form. To this end, as a unit length, we choose the
characteristic linear size of the cavity L, as a unit time — σ ⁄ ν, and a velocity unit —  χs

 ⁄ (ML), and we measure the
pressure and temperature perturbations in units ρ0νχs

 ⁄ σ and γ0L, respectively. Then the representation of the linear
system of equations of free convection of air in the snow will take on the form

∂V
∂t

 = − M∇ p − V + Ra
′
 θez ,   Pr

′
 
∂θ
∂t

 − (V ez) = ∆θ ,   div V = 0 ,   Pr
′
 χ
__

 
∂θm

∂t
 = ∆θm , (17)

where Ra′ = fβgMσγ0L2 ⁄ (χsν) is a dimensionless parameter, which is an analog of the Rayleigh number Ra =
βgL4γ0

 ⁄ (νχ) for an incompressible liquid; Pr′ = νL2 ⁄ (χsσ) is an analog of the Prandtl numbers Pr = ν ⁄ χ; χ
__

 = χs
 ⁄ χm.

Now in the system of equations (17) V, p, θ, and θm are the dimensionless perturbations and all derivatives
are taken with respect to the linear coordinates and time. Thus, the small perturbations satisfy the system of linear ho-
mogeneous equations with constant coefficients.

Horizontal Homogeneous Snow Cover. We shall further consider a snow cover limited by horizontal planes
z = 0 and z = H and lying on the top of a layer of frozen soil of thickness H1 (see Fig. 1). The behavior of the small
perturbations of air in the snow cover is described by the system of equations (17). We exclude from this system the
pressure p and the horizontal components of the velocity, Vx and Vy. To do this, we apply to this equation the rotrot
operation and project the resulting vector equation on the z-axis. As a result, we have a system of three equations for
the vertical velocity component Vz and for the perturbations of temperatures θ and θm:
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∂
∂t

 (∆Vz) = Ra
′
 ∆1θ − ∆Vz ,

(18)

Pr
′
 
∂θ
∂t

 = ∆θ + Vz , (19)

Pr
′
 χ
__

 
∂θm

∂t
 = ∆θm , (20)

where ∆1 = 
∂2

∂x2 + 
∂2

∂y2 is a plane Laplace operator.

We now formulate the system of boundary conditions.
Since frozen soil forms a solid mass, which we assume to be impermeable to air, the velocity of air on its

surface goes to zero:

Vz (0) = 0 . (21)

If the snow surface is covered with a thin layer of ice, the vertical air velocity component on it is also equal
to zero:

Vz (1) = 0 . (22)

But if the snow surface is permeable to air, then, as follows from the continuity equation, the following con-
dition should be met:

Vz
′
 (1) = 0 , (23)

where the prime denotes differentiation with respect to z.
Turning to the formulation of the boundary conditions for the temperature, note that under real conditions the

freezing of the soil is so slow that the temperatures in the snow cover and in the frozen soil are close to equilibrium.
In this case, the equation for the thermal balance on the snow surface, taking into account the heat- and mass-ex-
change between this surface and the environment, can be written in the form

− λs 
dθ
dz


 z=H

 = α′ (θs − θ∞) + β′Ls (ρw − ερw∞ ) , (24)

Fig. 1. Scheme of the two-layer medium
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where

ρw C ρw0 



1 + 

Lsθs

RwT0
2




 ;   ρw∞ C ρw0 







1 + 

Lsθs

RwT0

 − 
Ls (θs − θ∞)

RwT∞
2







 .

Equality (24) is rigorous only in the case where the snow surface is covered with a thin layer of ice and,
consequently, is closed to air. In the case of an open surface where the air can freely go from the snow outwards, it
is necessary to add the term ρcpεθsVz to the right-hand side of this equality. As estimates show, however, this term is
small compared to the other ones, and we shall further neglect it.

Let us assume that the snow-surface temperature θs receives a small perturbation θ1, and the saturating vapor
density at the same temperature also receives a small perturbation ρw1 C ρw0Lsθ1

 ⁄ (RwT0
2). By virtue of equality (24)

this increment satisfies the equation

− λs 
dθ1

dz



 z=H

 = 






α′ + β′ 

ρw0Ls
2

RwT0
2







 θ1 .

On going to dimensionless quantities, from this we obtain

θ′ (1) + hθ (1) = 0 , (25)

where

h = 
α′H

λs

 






1 + 

β′

α′
 
ρw0Ls

2

RwT0
2







 . (26)

As is known [3], the heat-exchange coefficient α′ = ρcpU, where U is the characteristic velocity of the air
flow at a certain distance l′ from the snow surface, and the mass-exchange coefficient  β′ = l′ ⁄ Dt, where Dt ≈ l′U. Then
equality (26) takes on the form

h = 
ρcpHU

ρscs χs

 






1 + 

ρw0Ls
2

ρcpRwT0
2







 . (27)

At the snow–frozen soil interface the conjugation conditions

θ (0) = θm (0) ,   θm
′  (0) = χ

__
 θ′ (0) , (28)

where χ
__

 = λs
 ⁄ λm should be met; at this frozen soil boundary the temperature is fixed and equal to zero; consequently:

θm 



− 

H1
H



 = 0 . (29)

Thus, the small perturbations of air equilibrium in the snow cover satisfy the system of linear homogeneous
equations in partial derivatives with constant coefficients (18)–(20), which should satisfy the homogeneous boundary
conditions (21)–(23), (25) and (28), and (29). Such systems, as is known, have partial solutions describing the so-
called "normal" perturbations that are exponentially dependent on time and periodic in the (x, y) plane:

Vz (x, y, z, t) = V (z) exp [− λt + i (k1x + k2y)] ,

θ (x, y, z, t) = Θ (z) exp [− λt + i (k1x + k2y)] ,
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θm (x, y, z, t) = Θm (z) exp [− λt + i (k1x + k2y)] ,

(30)

where V(z), Θ(z), and Θm(z) are the perturbation amplitudes.
Substituting (30) into (18)–(20), we obtain

λ (V′′  − k
2
V) = (V′′  − k

2
V) + k

2
 Ra

′
 Θ , (31)

− λ Pr
′
 Θ = (Θ′′

 − k
2Θ) + V , (32)

− λ Pr
′
 χ
__

 Θ = (Θm
′′

 − k
2Θm) . (33)

The amplitude equations (31)–(32) together with the homogeneous conditions (21)–(23) and (28), (29) form
the spectral problem determining the characteristic perturbations and their decrements for the snow cover.

"Monotony Principle" of Perturbations for the Snow Cover. Let us establish one important property of the
spectrum following from Eqs. (31)–(33) and the boundary conditions formulated above.

As in investigating the spectrum of small perturbations of incompressible liquid equilibrium [2], along with
the solutions (λ, V, Θ, Θm) of Eqs. (31)–(33), we consider the complex-conjugate solutions (λ∗ , V∗ , Θ∗ , Θm

∗ ) (asterisks
mark the complex-conjugate quantities). Multiply Eq. (31) by V∗  and integrate from 0 to 1:

λ ∫ 
0

1

(V′′  − k
2
V) V∗  dz = ∫ 

0

1

(V′′  − k
2
V) V∗  dz + k

2
 Ra

′
 ∫ 
0

1

V
∗
 Θdz . (34)

Taking into account that the integral

 ∫ 
0

1

(V′′  − k
2
V) V∗  dz = V

′
V
∗  0

1
 − ∫ 

0

1

[ V
′ 2

 + k
2
  V 2

] dz ,

equality (34), taking into account the boundary conditions (31)–(33), can be written in the form

(λ − 1) ∫ 
0

1

[ V
′ 2

 + k
2
  V 2

] dz = − k
2
 Ra

′
 ∫ 
0

1

ΘV
∗
dz . (35)

Passing in (35) to the complex-conjugate values, we obtain

(λ∗  − 1) ∫ 
0

1

[ V
′ 2

 + k
2
  V 2

] dz = − k
2
 Ra

′
 ∫ 
0

1

Θ∗
Vdz . (36)

Subtraction from (35) of equality (36) yields

(λ − λ∗ ) ∫ 
0

1

[ V
′ 2

 + k
2
  V 2

] dz = − k
2
 Ra

′
 ∫ 
0

1

Θ∗
Vdz . (37)

Performing the same operations with Eqs. (32) and (33) and taking into account the boundary conditions (25),
(28), and (29), we have
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(λ − λ∗ ) Pr
′
 ∫ 
0

1

Θ 2
 dz = ∫ 

0

1

(V∗ Θ − VΘ∗ ) dz + Θ (0) Θ∗
′

 (0) − Θ′
 (0) Θ∗

 (0) , (38)

(λ − λ∗ ) Pr
′
   ∫ 
−H1

 ⁄ H

0

  Θ m
2
 dz = − [Θ (0) Θ∗

′

 (0) − Θ′
 (0) Θ∗

 (0)] . (39)

Adding together (38) and (39), we obtain

(λ − λ∗ ) Pr
′
 






∫ 
0

1

 Θ 2
 dz +   ∫ 

−H1
 ⁄ H

0

  Θ m
2
 dz







 = ∫ 

0

1

(V∗ Θ − VΘ∗ ) dz . (40)

Now multiply equality (40) by k2 Ra′ and add to (37); in so doing, we have

(λ − λ∗ ) 






∫ 
0

1

  V

′ 2
 + k

2
  V 2

 + k
2
 Pr

′
 Ra

′
 Θ 2

  dz + k
2
 Pr

′
 Ra

′
   ∫ 
−H1

 ⁄ H

0

  Θ m
2
 dz






 = 0 . (41)

At Ra′ > 0 (heating from below) the expression between square brackets of equality (41) is always positive.
Consequently, the equality λ = λ∗  should take place.

Thus, at positive values of the Rayleigh number (Ra′ > 0) the decrements of normal perturbations are real and
all normal perturbations either decay or increase monotonically (monotony principle of perturbations) [2].

As in the case of an incompressible liquid equilibrium, in the case where the snow cover is heated from
below, there is a sequence of Rayleigh numbers, upon reaching which the equilibrium of the corresponding air pertur-
bation in the snow becomes unstable. When the above-formulated boundary conditions for V and Θ, perturbations with
λ > 0 decay with time and the equilibrium is stable, whereas at λ < 0 they increase and the equilibrium is unstable; the
value of λ = 0 gives a neutral perturbation separating stable and unstable perturbations. Assuming in the amplitude
equations (31)–(33) λ = 0, we thus obtain the boundary-value problem for the neutral perturbations

(V′′  − k
2
V) + k

2
 Ra

′
 Θ = 0 ,   (Θ′′

 − k
2Θ) + V = 0 ,   Θm

′′
 − k

2Θm = 0 (42)

with the homogeneous boundary conditions (21)–(23), (25), (28), and (29). In Eq. (42), double primes denote double
differentiation with respect to z. The eigennumbers of this problem are the critical Rayleigh numbers Ra′ and the
eigenfunctions are the amplitudes of critical perturbations.

In [1], the critical parameters of the main level of air stability in the snow in the case where the velocity sat-
isfies the boundary conditions (21)–(23) and the temperature satisfies the conditions Θ(0) = Θ(1) = 0 have been deter-
mined.

Below, we consider a more general case where the temperature satisfies the boundary-value condition (25).
Determination of the Critical Parameters of the Main Level of Air Instability in the Snow Cover. As-

sume that the temperature at the snow–frozen soil interface is fixed and the snow surface is permeable to air and ex-
changes heat with the environment by law (24). Then the determination of the critical parameters of the main level of
air instability is reduced to the solution of the first two equations of system (42) under the following boundary condi-
tions:

V (0) = 0 ,  V
′
 (0) = 0 ,   Θ (0) = Θ (1) = 0 ,   Θ′

 (1) + h Θ (1) = 0 .

We solve the problem approximately. To do this, we make use of the second, modified variant of the Bubnov–Galer-
kin method [2]. As the basis function, we take the function
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V (z) = sin 
πz
2

 , (43)

satisfying the boundary conditions (21)–(23).
Substituting (43) into the second equation of system (42) and solving the obtained equation, we have

Θ = 
1

k
2
 + 
π2

4

 






sin 

πz
2

 − 
sinh kz

k
h

 cosh k + sinh k







 . (44)

Substituting (43) and (44) into the first equation of system (42), we obtain




k

2
 + 
π2

4





2

 sin 
πz
2

 = k
2
 Ra

′
 






sin 

πz
2

 − 
sinh kz

k
h

 cosh k + sinh k







 . (45)

Multiply either side of Eq. (45) by Vz = sin 
πz
2

 and integrate from 0 to 1. Taking into account that the integral

 ∫ 
0

1

sinh kz sin 
πz
2

 dz B 
k cosh k

k
2
 + 
π2

4

 ,

we have

Ra
′
 = 




k

2
 + 
π2

4





3

k
2
 






k

2
 + 
π2

4
 − 

2k
k
h

 + tanh k








 . (46)

We find the critical value of the wave number at which the Ra′ number takes on the minimum value from
the condition ∂Ra′ ⁄ dk = 0, which leads to the following transcendental equation:

3k
2
 






k

2
 + 
π2

4
 − 

2k
k
h

 + tanh k







 = 



k

2
 + 
π2

4




 













2k
2
 + 
π2

4
 − 

2k
k
h

 + tanh k
 − 

k tanh k − 
k

2

cosh
2
 k




k
h

 + tanh k


2













 . (47)

Equation (47) contains only a single parameter h depending on the conditions of heat- and mass-exchange be-
tween the snow surface and the environment. We assume the following characteristic features of the parameters enter-
ing into equality (27): ρs = 300 kg ⁄ m3, cp = 1 kJ/(kg⋅deg), cs = 1.38 kJ/(kg⋅deg), χs = 4⋅10−8 m2 ⁄ sec, Ls = 2850 kJ/kg,
Rw = 4.6 kJ/(kg⋅deg), ρ = 1.29 kg ⁄ m3, ρw0 = 6.2⋅10−4 kg ⁄ m3, H = 0.5 m, U = 0.01 m/sec, and then h C 40.

The numerical solution of Eq. (47) yields the following values for the critical parameters of the main level
of instability: kmin = 2.5 and Ramin

′  = 24.8 at h = 20; kmin = 2.3 and Ramin
′  = 28.9 at h = 40; kmin = 2.3 and Ramin

′  = 32
at h → ∞.

We now consider the case where the snow surface is impermeable to air: V(0) = V(1) = 0. As the basis func-
tion, we take

V (z) = sin πz . (48)
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In this case,

Θ = 
1

k
2
 + π2 




sin πz + 

π sinh kz

k cosh k + h sinh k




 . (49)

As above, substitute (48) and (49) into the first equation of system (42) and integrate from 0 to 1. As a re-
sult, we have

Ra
′
 = 

(k2
 + π2)3

k
2
 



k

2
 + π2

 + 
2π2

 tanh k

k + h tanh k





 .

When h → ∞ we obtain from this the known results [2]: kmin = π, Ramin
′  = 4π2. At h ≠ ∞ the value of kmin differs but

slightly from π and Ramin
′  C 4π2 


1 − 

1
π + h




.

Thus, in the general case, with increasing h the critical values of kmin and Ramin
′  tend to the limiting values

that are obtained at a fixed value of the snow-surface temperature. In this case, as would be expected, a "weakening"
of the boundary condition for the air velocity leads to a decrease in the critical value of Ramin

′  and an increase in the
critical wavelength.

The critical temperature gradient in the snow cover at which loss of equilibrium stability begins is determined
by the formula

γcr = 
ν χs Ramin

′

βfgMH
2σ

 . (50)

At values of the permeability coefficient σ C 10−8 m2, of the density of ρ = 0.3 kg ⁄ m3, and h = 40 that are
characteristic of snow, by formula (5) γcr C 0.16 deg/m is obtained, i.e., this value exceeds the dry-adiabatic tempera-
ture gradient by a factor of 16.

Thus, the small temperature gradients in the snow cover caused by a change in the ambient temperature lead
to the appearance of convection in the bulk of the snow. From this it follows that the chief factor determining the
processes of heat and mass transfer in the snow cover is the convective motion of the air filling the pores in the
snow, and the molecular heat conductivity and diffusion play only a secondary role.

In conclusion, note that the above results can be extended to a cultivated layer of soil as well as to any free-
flowing material containing air inclusions. In particular, formula (50), when properly corrected, can be used to deter-
mine the possibility of the appearance of convective motion of air in the masses of grain, potatoes, and other
vegetables in granaries and vegetable store-houses by the value of the temperature gradient in them.

NOTATION

F, friction force; ρ, air density; f, porosity factor (ratio of the pore volume to the total volume of the snow);
V, mass velocity of air in the snow; p, air pressure; g, acceleration of gravity; µ, air viscosity; σ, permeability coef-
ficient of snow; t, time; z, vertical coordinate; ν, kinematic viscosity of air; j, heat flux; λs, heat-conductivity coeffi-
cient of snow; ∇ , gradient operator; θ, temperature of snow, oC; Ls, specific heat of evaporation of snow (ice); Dw,
diffusion coefficient of water vapor in air; ρw, saturating density of vapor; cp, heat capacity of air at a constant pres-
sure; ρs, snow density; cs, heat capacity of snow; ρw0, saturating density of vapor at 0oC; Rw, gas constant of water
vapor; T0 = 273 K; χs, effective thermal diffusivity of snow; R, gas constant of air; T, absolute temperature; T′, tem-
perature perturbation; p′, pressure perturbation; sTt, mean value of the temperature; spt, mean value of the pressure;
ρ0, mean air density; α, isothermal compressibility coefficient of air; β, coefficient of thermal expansion of air; l, char-
acteristic linear scale of vertical; γa, dry-adiabatic temperature gradient; γs, temperature gradient in the snow cover; ez,
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unit vector along the z-axis; θm, mass (of frozen soil) temperature, oC; χm, thermal diffusivity of the mass; ∆, Laplace
operator; λm, heat-conductivity coefficient of the mass; n, normal to the snow–solid mass interface; θ1, small nonsta-
tionary perturbations of temperature; p1, small nonstationary perturbations of pressure; θ0, equilibrium temperature in
the snow; θm0, temperature in the mass; V1, nonstationary perturbations of the air velocity in the snow; θm1, nonsta-
tionary temperature perturbations in the mass; L, linear size of the cavity; γ0, equilibrium temperature gradient in the
snow; Ra, Rayleigh number for an incompressible liquid; Pr, Prandtl number for an incompressible liquid; Ra′,
Rayleigh number for snow; Pr′, Prandtl number for snow; H, thickness of the snow cover; α′, coefficient of heat ex-
change between the snow surface and the environment; β′, coefficient of mass exchange between the snow surface and
the environment; θs, temperature of the snow surface; ρw∞, saturating vapor density at a distance from the snow sur-
face; ε, relative humidity of air; T∞, absolute temperature of air; ρw1, small increment of the water vapor density in
air; U, characteristic velocity of air over the snow surface; l′, characteristic distance from the snow surface; Dt, turbu-
lent heat diffusivity of air; H1, depth of the frozen soil layer; λ, decrement; k1 and k2, real wave numbers; Θ(z), am-
plitude of temperature perturbations in the snow; Θm(z), amplitude of temperature perturbations in the mass; γcr,
critical temperature gradient in the snow; k, wave number; h, dimensionless quantity. Subscripts: cr, critical; a, adi-
abatic; w, water vapor; s, snow; t, turbulent; m, mass (frozen soil).
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